
Fight Against Magecart
written by Mert SARICA | 2 February 2020
Recently, cyber attacks carried out by the Magecart group, which has become
the nightmare of companies ranging from e-commerce companies (such as Newegg)
to airlines (such as British Airways), to ticketing companies (such as
Ticketmaster and Biletix) and media companies (such as ABS-CBN), continue to
affect our country and our citizens. These attacks resulted in not only
reputational damage but also high penalties due to laws and regulations such
as GDPR and KVKK, as was the case with British Airways.

If I move on to my story, in June 2019, Tarık Uygun (@uyguntt) contacted me
via direct message on Twitter, he said he had received a warning message that
suspicious transactions were made using his credit card from Akbank. (Cheers
to Akbank Fraud Risk Management Team. :) ) After he remembered that he had
last used the card to make a purchase from a website that offers spa and
massage deals, he found out through some research that when credit card
information is entered, the information is hidden in the hash parameter and
sent to
https://kinitrofitness[.]com/wp-includes/class-wp-customize-settings.php. He
decided to share this with me.

https://www.mertsarica.com/fight-against-magecart/
https://www.zdnet.com/article/new-magecart-attacks-leverage-misconfigured-s3-buckets-to-infect-over-17k-sites/
https://www.zdnet.com/article/magecart-claims-another-victim-in-newegg-merchant-data-theft/
https://www.zdnet.com/article/british-airways-breach-caused-by-the-same-group-that-hit-ticketmaster/
https://www.zdnet.com/article/ticketmaster-breach-was-part-of-a-larger-credit-card-skimming-effort-analysis-shows/
https://www.mertsarica.com/biletix-vakasi/
https://www.zdnet.com/article/broadcasting-giant-abs-cbn-customer-data-stolen-sent-to-russian-servers/
https://thehackernews.com/2019/07/british-airways-breach-gdpr-fine.html
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://kvkk.gov.tr/
https://www.britishairways.com
https://twitter.com/uyguntt


As soon as I had the chance, I visited the website on a virtual machine and
started recording all requests and responses using the Fiddler Proxy tool.
After I’ve gone through enough, I found that when I increased the ?hash=
parameter on Fiddler, the harmful JavaScript code that had been injected into
the site was located at
https://www.xyz.com/media/po_compressor/1/js/6cb1e31ff2f343a9d576d889bfcbde0e
.js, and this address was also injected into the homepage.

https://www.telerik.com/fiddler


As I wrote in the Biletix Incident article, I decided to quickly look at the
JavaScript code rather than dynamically analyzing it. When I looked at the
code, I saw that it was hidden (obfuscated) and could not easily be
deciphered with tools like IlluminateJs.

After looking a bit further, I clearly understood that this code was stealing
the customer’s credit card information (Number, Holder, HolderFirstName,
HolderLastName, Date, Month, Year, CVV, Gate, Data, Sent, SaveParam). When I
did a quick search on Google, I also found that it was similar to the code

https://www.mertsarica.com/biletix-vakasi/
https://illuminatejs.com/
https://twitter.com/eComscan/status/1147077036692922368


used in the hack of 962 sites using the Magento e-commerce platform that
occurred in July.”

Leaving the analysis of the harmful JavaScript code for another article, I
began to think about what else I could do to detect this type of harmful
JavaScript code injection, as it has become different from the cyber attacks
I covered in my Threat Hunting blog post from 2017.

Recently, for my Domain Name Management Deadlock blog post, I started working
on converting my tool RedSpider, which I developed for it, into a tool that
scans the target site and downloads and analyzes JavaScript codes using Yara
rules.

After installing the yara-python module, I decided to take advantage of the
Yara-Rules project for the detection of harmful JavaScript code. In a short
development period, the RedScanner tool, which uses the Scrapy software
framework, emerged.

As an example, when I ran the RedScanner tool on the target website by using
the command “scrapy runspider –nolog RedScanner.py -a “urls=xyz[.]com”“, I
found that it successfully detected the harmful code injected into the
website using the existing Yara rules. Do not forget that you can also add
your own special rules to the YARA rules used by the RedScanner tool, which
will help to increase the detection rate.

https://www.bleepingcomputer.com/news/security/automated-magecart-campaign-hits-over-960-breached-stores/
https://magento.com
https://www.mertsarica.com/tehdit-avi/
https://www.mertsarica.com/domain-name-management-deadlock/
https://github.com/mertsarica/hack4career/blob/master/codes/RedSpider.py
https://virustotal.github.io/yara/
https://github.com/VirusTotal/yara-python
https://github.com/Yara-Rules/rules
https://github.com/mertsarica/hack4career/blob/master/codes/RedScanner.py
https://scrapy.org/


I hope that this article will be helpful to those who want to detect harmful
JavaScript code injected into their websites with Magecart and similar cyber
attacks. Hope to see you in the following article.

Note: I thank Zero Xyele, a twitter user who persisted on my case for months,
for pushing me to write this article.

https://twitter.com/zeroxyele/status/1213104837237325828

