Honeypot Detection

written by Mert SARICA | 3 September 2018

About a year ago, when I was planning my Hacker Hunt with a Deception System project, I was faced with the dilemma of whether to use a low-interaction or high-interaction honeypot system. When looking at the fundamental difference between them, we can say that a low-interaction honeypot, which simulates a real system or service, is relatively easier to set up, manage, and secure. On the other hand, a high-interaction honeypot involves a real, live system, making its installation, management, and security more challenging due to isolation.

From a management perspective, the use of low-interaction honeypot systems may sound more practical. However, the main purpose of using honeypots is to attract and learn about the tactics, techniques, and procedures (TTP) used by cyber attackers. In practice, it can be much more difficult for attackers to detect high-interaction honeypots. When I observed the behaviors of numerous cyber attackers who attempted to hack my honeypot system for six months, most of them did not perform specific checks to determine if the system was a trap. Therefore, you may not need to exert much effort to harden high-interaction local honeypot systems.

Indeed, when it comes to detecting low-interaction honeypot systems, attackers can often perform a simple scan using tools like Nmap. This is why it is crucial for individuals and organizations that use honeypots to make them appear undetectable before placing them alongside live systems. In some cases, even before cyber attackers, the National Cybersecurity Intervention Center (USOM) may contact the internet service provider regarding this system, citing its vulnerability.:)

```
C:\Users\Mert>nmap
Starting Nmap 7.12 ( https://nmap.org ) at 2017-07-12 19:00 Turkey Standard Time
mass dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
servers with --dns-servers
Nmap scan report for
Host is up (0.017s latency).
Not shown: 990 closed ports
PORT
        STATE
                  SERVICE
21/tcp
        open
                  ftp
25/tcp
        filtered smtp
42/tcp
        open
                  nameserver
135/tcp open
                  msrpc
                  microsoft-ds
445/tcp open
1433/tcp open
                  ms-sql-s
1720/tcp filtered h323q931
3306/tcp open
                  mysql
5060/tcp open
                  sip
5061/tcp open
                  sip-tls
C:\Users\Mert>nmap -sV
Starting Nmap 7.12 ( https://nmap.org ) at 2017-07-12 19:00 Turkey Standard Time
mass dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
servers with --dns-servers
Nmap scan report for
Host is up (0.019s latency).
Not shown: 990 closed ports
                              VERSTON
                  SERVICE
PORT
        STATE
21/tcp
        open
                  ftp
                               Dionaea honeypot ftpd
25/tcp
        filtered smtp
42/tcp
                 nameserver?
        open
135/tcp open
                  msrpc?
                 microsoft-ds Dionaea honeypot smbd
445/tcp open
1433/tcp open
                               Dionaea honeypot MS-SQL server
                  ms-sql-s
1720/tcp filtered h323q931
3306/tcp open
                  mysql
                               MySQL 5.0.54
5060/tcp open
                  sip
                               (SIP end point; Status: 200 OK)
                  ssl/sip
                               (SIP end point; Status: 200 OK)
5061/tcp open
```

16.03.2017 - MS17-010 - CVE-2017-0143-0148

25.09.2010 - MS10-061 - CVE-2010-2729

08.09.2009 - MS09-001 - CVE-2009-3103

25.09.2008 - MS08-067 - CVE-2008-4250

Konu ile ilgili microsoft bülteninin adresi aşağıdaki gibidir.

https://technet.microsoft.com/tr-tr/library/security/ms08-067.aspx

Konu ile ilgili gerekli müdahaleleri gerçekleştirdikten sonra bilgi vermenizi rica ederiz.

When it comes to honeypot systems, many people think of Dionaea. As seen in the screenshot above, Dionaea can be easily detected by Nmap when installed with the default settings. However, a quick search on the internet reveals numerous resources (#1, #2, #3) on how to make Dionaea appear undetectable. For example, by changing the "r.VersionToken.TokenType" parameter in the "/dionaea/mssql/mssql.py" file from 0x00 to 0x01, which simulates the MSSQL service, Nmap can no longer detect Dionaea running on port 1433. Since Dionaea simulates vulnerable services (low interaction), making it appear undetectable based on the information found in these resources can make it quite easy to identify Dionaea from the perspective of a cyber attacker. This sparked my interest in researching how easy it actually is to detect an "undetectable" Dionaea.

To avoid the hassle of setting up Dionaea, I opted to install T-Pot, a honeypot virtual system developed by Deutsche Telekom that includes numerous honeypot systems, including Dionaea. Considering that a small honeypot system like Dionaea may not fully simulate the MSSQL service (TDS protocol), I decided to start with port 1433.

System Placement

Make sure your system is reachable through the internet. Otherwise it will not capture any attacks, other than the ones from your hostile internal network! We recommend you put it in an unfiltered zone, where all TCP and UDP traffic is forwarded to T-Pot's network interface.

If you are behind a NAT gateway (e.g. home router), here is a list of ports that should be forwarded to T-Pot.

```
Honeypot Transport
                                             Forwarded ports
conpot TCP
                   1025, 50100
cowrie TCP
                   22, 23
dionaea TCP
                  21, 42, 135, 443, 445, 1433, 1723, 1883, 1900, 3306, 5060, 5061, 8081, 11211
dionaea UDP
                  69, 5060
                  9200
elasticpot TCP
                   8080
emobility TCP
glastopf TCP
honeytrap TCP
                 25, 110, 139, 3389, 4444, 4899, 5900, 21000
```


Installer boot menu

T-Pot 16.10
Advanced options
Help

Press ENTER to boot or TAB to edit a menu entry

All of the above

- 8 GB RAM

- 128 GB disk or larger (128 GB SSD or larger recommended)

Install Type:

```
C:\WINDOWS\system32\cmd.exe
                                                                                                                   X
 :\Users\Mert>nmap 192.168.20.128 -sV -p 21,42,135,443,445,1433,1723,1883,1900,3306,5060,5061,8081,11211
Starting Nmap 7.12 ( https://nmap.org ) at 2017-09-15 14:39 Turkey Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns or specify valid
servers with --dns-servers
Nmap scan report for 192.168.20.128
Host is up (0.00043s latency)
PORT
          STATE SERVICE
21/tcp
                ftp
                              Synology DiskStation NAS ftpd
         open
42/tcp
                 nameserver?
         open
135/tcp
                msrpc?
         open
443/tcp
                ssl/http
         open
                              nginx
445/tcp
         open
                microsoft-ds Dionaea honeypot smbd
1433/tcp
                ms-sql-s
                              Dionaea honeypot MS-SQL server
         open
1723/tcp
                               (Firmware: 1)
         open
                pptp
1883/tcp
                 unknown
         open
L900/tcp
         closed upnp
3306/tcp
                              MySQL 5.7.16
                mvsal
         open
5060/tcp
         open
                 sip?
                 ssl/sip-tls?
5061/tcp
         open
8081/tcp open
                              nginx
                http
                              memcached 1.4.25 (PID 2809; uptime 10925 seconds; curr items: 380; total items: 461; bytes
11211/tcp open
                 memcache
cached: 34096)
 service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint
at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port1883-TCP:V=7.12%I=7%D=9/15%Time=59BBBC01%P=i686-pc-windows-windows%
SF:r(NotesRPC,4,"@\x02/\0");
MAC Address: 00:0C:29:CB:83:8B (VMware)
Service Info: Device: storage-misc
```

To establish communication between an MSSQL server and a client at the application level, the TDS (Tabular Data Stream) protocol must be used. The TDS protocol supports two types of login methods that have been available since the beginning. The first is login using a username and password, and the second is login using Windows authentication (NTLM). Normally, when attempting to log in with a username and password using the TDS protocol, the response from the MSSQL server should include the LOGINACK_TOKEN (0xAD) token, and when attempting to log in with Windows authentication, it should include the SSPI TOKEN (0xED) token. However, Dionaea returns the same result for both types of requests.:)

Response from Microsoft SQL 2008 Server Express version to a Windows authentication request

Response from Dionaea to a Windows authentication request

In such a situation, I quickly prepared a simple tool named "dionaea_detector.py" using the pymssql library in Python, which can detect this difference. With this tool, I was able to identify the Dionaea honeypot system, which Nmap couldn't detect, through a simple check. By doing this, I learned how easily malicious individuals can practically detect it.

Exactly, before using a honeypot system, it is important to thoroughly evaluate the advantages and disadvantages of high and low interaction honeypots. Choosing the one that is difficult to detect by cyber attackers or making modifications to existing systems to make it more challenging can be beneficial for you or your organization. By considering these factors and implementing the appropriate measures, you can enhance your security and gain valuable insights into the tactics and techniques used by malicious actors.

Hope to see you in the following articles.

Note: Although the screenshots belong to T-Pot version 16.10, it has been confirmed that the dionaea_detector.py tool can successfully detect Dionaea in the latest version of T-Pot, which is version 17.10 sürümü.