
Honeypot Detection
written by Mert SARICA | 3 September 2018
About a year ago, when I was planning my Hacker Hunt with a Deception System
project, I was faced with the dilemma of whether to use a low-interaction or
high-interaction honeypot system. When looking at the fundamental difference
between them, we can say that a low-interaction honeypot, which simulates a
real system or service, is relatively easier to set up, manage, and secure.
On the other hand, a high-interaction honeypot involves a real, live system,
making its installation, management, and security more challenging due to
isolation.

From a management perspective, the use of low-interaction honeypot systems
may sound more practical. However, the main purpose of using honeypots is to
attract and learn about the tactics, techniques, and procedures (TTP) used by
cyber attackers. In practice, it can be much more difficult for attackers to
detect high-interaction honeypots. When I observed the behaviors of numerous
cyber attackers who attempted to hack my honeypot system for six months, most
of them did not perform specific checks to determine if the system was a
trap. Therefore, you may not need to exert much effort to harden high-
interaction local honeypot systems.

Indeed, when it comes to detecting low-interaction honeypot systems,
attackers can often perform a simple scan using tools like Nmap. This is why
it is crucial for individuals and organizations that use honeypots to make
them appear undetectable before placing them alongside live systems. In some
cases, even before cyber attackers, the National Cybersecurity Intervention
Center (USOM) may contact the internet service provider regarding this
system, citing its vulnerability. :)

https://www.mertsarica.com/honeypot-detection/
https://www.mertsarica.com/hacker-hunt-with-a-deception-system/
https://en.wikipedia.org/wiki/Honeypot_(computing)
https://nmap.org/




When it comes to honeypot systems, many people think of Dionaea. As seen in
the screenshot above, Dionaea can be easily detected by Nmap when installed
with the default settings. However, a quick search on the internet reveals
numerous resources (#1, #2, #3) on how to make Dionaea appear undetectable.
For example, by changing the “r.VersionToken.TokenType” parameter in the
“/dionaea/mssql/mssql.py” file from 0x00 to 0x01, which simulates the MSSQL
service, Nmap can no longer detect Dionaea running on port 1433. Since
Dionaea simulates vulnerable services (low interaction), making it appear
undetectable based on the information found in these resources can make it
quite easy to identify Dionaea from the perspective of a cyber attacker. This
sparked my interest in researching how easy it actually is to detect an
“undetectable” Dionaea.

https://github.com/DinoTools/dionaea
https://www.securityartwork.es/2014/06/05/avoiding-dionaea-service-identificatio
https://devwerks.net/blog/15/dionaea-honeypot-obfuscation-avoiding-service-identification/
https://www.attacusatlas.com/how-to-set-up-dionaea-honeypot-to-evade-nmap-detection/


To avoid the hassle of setting up Dionaea, I opted to install T-Pot, a
honeypot virtual system developed by Deutsche Telekom that includes numerous
honeypot systems, including Dionaea. Considering that a small honeypot system
like Dionaea may not fully simulate the MSSQL service (TDS protocol), I
decided to start with port 1433.

http://dtag-dev-sec.github.io/
https://www.telekom.com/en




To establish communication between an MSSQL server and a client at the
application level, the TDS (Tabular Data Stream) protocol must be used. The
TDS protocol supports two types of login methods that have been available
since the beginning. The first is login using a username and password, and
the second is login using Windows authentication (NTLM). Normally, when
attempting to log in with a username and password using the TDS protocol, the
response from the MSSQL server should include the LOGINACK_TOKEN (0xAD)
token, and when attempting to log in with Windows authentication, it should
include the SSPI TOKEN (0xED) token. However, Dionaea returns the same result
for both types of requests. :)

Response from Microsoft SQL 2008 Server Express version to a Windows
authentication request

https://msdn.microsoft.com/en-us/library/dd304523.aspx


Response from Dionaea to a Windows authentication request

In such a situation, I quickly prepared a simple tool named
“dionaea_detector.py” using the pymssql library in Python, which can detect
this difference. With this tool, I was able to identify the Dionaea honeypot
system, which Nmap couldn’t detect, through a simple check. By doing this, I
learned how easily malicious individuals can practically detect it.

https://github.com/mertsarica/hack4career/blob/master/codes/dionaea_detector.py
http://www.pymssql.org/en/stable/




Exactly, before using a honeypot system, it is important to thoroughly
evaluate the advantages and disadvantages of high and low interaction
honeypots. Choosing the one that is difficult to detect by cyber attackers or
making modifications to existing systems to make it more challenging can be
beneficial for you or your organization. By considering these factors and
implementing the appropriate measures, you can enhance your security and gain
valuable insights into the tactics and techniques used by malicious actors.

Hope to see you in the following articles.

Note: Although the screenshots belong to T-Pot version 16.10, it has been
confirmed that the dionaea_detector.py tool can successfully detect Dionaea
in the latest version of T-Pot, which is version 17.10 sürümü.

http://dtag-dev-sec.github.io/mediator/feature/2017/11/07/t-pot-17.10.html

