Honeypot Detection

written by Mert SARICA | 3 September 2018
About a year ago, when I was planning my Hacker Hunt with a Deception System project, I was faced with the dilemma of whether to use a low-interaction or high-interaction honeypot system. When looking at the fundamental difference between them, we can say that a low-interaction honeypot, which simulates a real system or service, is relatively easier to set up, manage, and secure. On the other hand, a high-interaction honeypot involves a real, live system, making its installation, management, and security more challenging due to isolation.

From a management perspective, the use of low-interaction honeypot systems may sound more practical. However, the main purpose of using honeypots is to attract and learn about the tactics, techniques, and procedures (TTP) used by cyber attackers. In practice, it can be much more difficult for attackers to detect high-interaction honeypots. When I observed the behaviors of numerous cyber attackers who attempted to hack my honeypot system for six months, most of them did not perform specific checks to determine if the system was a trap. Therefore, you may not need to exert much effort to harden highinteraction local honeypot systems.

Indeed, when it comes to detecting low-interaction honeypot systems, attackers can often perform a simple scan using tools like Nmap. This is why it is crucial for individuals and organizations that use honeypots to make them appear undetectable before placing them alongside live systems. In some cases, even before cyber attackers, the National Cybersecurity Intervention Center (USOM) may contact the internet service provider regarding this system, citing its vulnerability. :)

```
C:\Users\Mert>nmap
Starting Nmap 7.12 ( https://nmap.org ) at 2017-07-12 19:00 Turkey Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
    servers with --dns-servers
Nmap scan report for
L
Host is up (0.017s latency).
Not shown: 990 closed ports
PORT STATE SERVICE
21/tcp open ftp
25/tcp filtered smtp
42/tcp open nameserver
135/tcp open msrpc
445/tcp open microsoft-ds
1433/tcp open ms-sql-s
1720/tcp filtered h323q931
3306/tcp open mysql
5060/tcp open sip
5061/tcp open sip-tls
C:\Users\Mert>nmap -sV < < 
Starting Nmap 7.12 ( https://nmap.org ) at 2017-07-12 19:00 Turkey Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled.
    servers with --dns-servers
Nmap scan report for
Host is up (0.019s latency).
Not shown: 990 closed ports
lll
25/tcp filtered smtp
42/tcp open nameserver?
135/tcp open msrpc?
445/tcp open microsoft-ds Dionaea honeypot smbd
1433/tcp open ms-sql-s Dionaea honeypot MS-SQL server
1720/tcp filtered h323q931
3306/tcp open mysql
5060/tcp open sip
MySQL 5.0.54
(SIP end point; Status: 200 OK)
5061/tcp open ssl/sip (SIP end point; Status: 200 OK)
```

```
16.03.2017 - MS17-010 - CVE-2017-0143-0148
25.09.2010 - MS10-061 - CVE-2010-2729
08.09.2009 - MS09-001 - CVE-2009-3103
25.09.2008 - MS08-067 - CVE-2008-4250
```

Konu ile ilgili microsoft bülteninin adresi aşağıdaki gibidir.
https://technet.microsoft.com/tr-tr/library/security/ms08-067.aspx

Konu ile ilgili gerekli müdahaleleri gerçekleştirdikten sonra bilgi vermenizi rica ederiz.

When it comes to honeypot systems, many people think of Dionaea. As seen in the screenshot above, Dionaea can be easily detected by Nmap when installed with the default settings. However, a quick search on the internet reveals numerous resources (\#1, \#2, \#3) on how to make Dionaea appear undetectable. For example, by changing the "r.VersionToken.TokenType" parameter in the "/dionaea/mssql/mssql.py" file from $0 x 00$ to $0 x 01$, which simulates the MSSQL service, Nmap can no longer detect Dionaea running on port 1433. Since Dionaea simulates vulnerable services (low interaction), making it appear undetectable based on the information found in these resources can make it quite easy to identify Dionaea from the perspective of a cyber attacker. This sparked my interest in researching how easy it actually is to detect an "undetectable" Dionaea.
(as CiWINDOWSLsytem32Temd.ex
:\Users\Mert\Desktop>nmap 192.168.20.128 -p 1433 -sV
Starting Nmap 7.12 (https://nmap.org) at 2017-09-18 22:44 Turkey Standard Time
tass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns or specify vali rass_ans: warning: Unable
servers with --dns-servers
imap scan report for 192.168.20.128
Host is up (0.00s latency).
1433/tcp open ms-sql-s?
service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint
at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port1433-TCP:V=7.12\%I=7\%D=9/18\%Time=59C02224\%P=i686-pc-windows-windows\%
5F:r(ms-sql-s, 2B," \x04\x01\0\+\0\0\0\0\x01\0\x1a\0\x06\x01\0\x20\0\x01\x02
F: \0! \0\x01\x03\0\"\0\0\x04\0\"\0\x01\xff\x08\0\x02\x10\0\0\x02\0\0"),
AC Address: 00:0C:29:CB:83:8B (Viware)
Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Imap done: 1 IP address (1 host up) scanned in 152.82 seconds
: \Users \Mert\Desktop>-

To avoid the hassle of setting up Dionaea, I opted to install T-Pot, a honeypot virtual system developed by Deutsche Telekom that includes numerous honeypot systems, including Dionaea. Considering that a small honeypot system like Dionaea may not fully simulate the MSSQL service (TDS protocol), I decided to start with port 1433.

System Placement

Make sure your system is reachable through the internet. Otherwise it will not capture any attacks, other than the ones from your hostile internal network! We recommend you put it in an unfiltered zone, where all TCP and UDP traffic is forwarded to T-Pot's network interface.

If you are behind a NAT gateway (e.g. home router), here is a list of ports that should be forwarded to T-Pot.

Honeypot Transport	Forwarded ports	
conpot	TCP	1025,50100
cowrie	TCP	22,23
dionaea	TCP	$21,42,135,443,445,1433,1723,1883,1900,3306,5060,5061,8081,11211$
dionaea	UDP	69,5060
elasticpot	TCP	9200
emobility	TCP	8080
glastopf	TCP	80
honeytrap	TCP	$25,110,139,3389,4444,4899,5900,21000$

ubuntu®

Installer boot menu

T-Pot 16.18
 Aduanced options
 $>$
 Help

Press ENTER to boot or TAB to edit a menu entry

\#\#\#\# Removing NGINX default website.
\#\#\# Waiting a few seconds to avoid interference with service messages.
\#\#\# Please choose your install type and notice $H \mathbb{H}$ recommendation.
[T] - T-Pot Standard Installation

- Courie, Dionaea, Elasticpot, Glastopf, Honeytrap, Suricata \& ELK
- 4 GB RAM (6-8 GB recommended)
- 64GB disk (128 GB SSD recommended)
[H] - Honeypots Only Installation
- Courie, Dionaea, ElasticPot, Glastopf \& Honeytrap
- 3 GE RAM (4-6 GE recommended)
- 64 GB disk (64 GB SSD recommended)
[I] - Industrial
- ConPot, eMchility, ELK \& Suricata
- 4 GB RAM (8 GB recommended)
- 64 GB disk (128 GB SSD recommended)
[E] - Everything
- All of the above
- 8 GE RAM
- 128 GB disk or larger (128 GB SSD or larger recommended)

Install Type:

```
Cu.4. C:\WINDOWS\system32\cmd.exe
                - 
    \\Users\Mert>nmap 192.168.20.128 -sV -p 21,42,135,443,445,1433,1723,1883,1900,3306,5060,5061,8081,11211
Starting Nmap 7.12 ( https://nmap.org ) at 2017-09-15 14:39 Turkey Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns or specify valid
servers with --dns-servers
Nmap scan report for 192.168.20.128
Host is up (0.00043s latency).
PORT STATE SERVICE VERSION
21/tcp open ftp Synology DiskStation NAS ftpd
42/tcp open nameserver?
135/tcp open msrpc?
443/tcp open ssl/http nginx
445/tcp open microsoft-ds Dionaea honeypot smbd
1433/tcp open ms-sql-s Dionaea honeypot MS-SQL server
1723/tcp open pptp (Firmware: 1)
1883/tcp open unknown
1900/tcp closed upnp
3306/tcp open mysql MySQL 5.7.16
5060/tcp open sip?
5061/tcp open ssl/sip-tls?
8081/tcp open http nginx
11211/tcp open memcache memcached 1.4.25 (PID 2809; uptime 10925 seconds; curr items: 380; total items: 461; bytes
cached: 34096)
1 \text { service unrecognized despite returning data. If you know the service/version, please submit the following fingerprint}
at https://nmap.org/cgi-bin/submit.cgi?new-service
SF-Port1883-TCP:V=7.12%I=7%D=9/15%Time=59BBBC01%P=i686-pc-windows -windows%
SF:r(NotesRPC,4,"@\x02/\0");
MAC Address: 00:0C:29:CB:83:8B (VMware)
Service Info: Device: storage-misc
```

To establish communication between an MSSQL server and a client at the application level, the TDS (Tabular Data Stream) protocol must be used. The TDS protocol supports two types of login methods that have been available since the beginning. The first is login using a username and password, and the second is login using Windows authentication (NTLM). Normally, when attempting to log in with a username and password using the TDS protocol, the response from the MSSQL server should include the LOGINACK_TOKEN (0xAD) token, and when attempting to log in with Windows authentication, it should include the SSPI TOKEN (0xED) token. However, Dionaea returns the same result for both types of requests. :)

Response from Microsoft SQL 2008 Server Express version to a Windows authentication request

Response from Dionaea to a Windows authentication request

In such a situation, I quickly prepared a simple tool named "dionaea_detector.py" using the pymssql library in Python, which can detect this difference. With this tool, I was able to identify the Dionaea honeypot system, which Nmap couldn't detect, through a simple check. By doing this, I learned how easily malicious individuals can practically detect it.

troo on mport geeenv
theort pubpal

1. Wport pyase

4 bort or or

- Enabie Tospoxs
, Giobal variabies
weer - "Hacktarteer veerssura-
doe cia) (\qquad
if syop prattorz olit syo. paectorm - vinn2:
olse: osysencelor
os. syyten(cele.)
Eaof banner 0
elo
print
print \qquad
aot usgose
print -Venge: D
eever $-1.12 .166 .20 .1290^{2}$

 bamer 0
it len(tyys.argy) < 2
any exxera
elsee:
pymasq1.connect (gys.argv[1], user, password, timeout-3, login ciecout-3)

File tad Serch Viem Encoding Lenguge Setings Moco Run Toutr Moyms Window,


```
    : Dionses Detector v1.
    { z-ma11: mert (, 1 sariea (f)| mai1 ( . ) com
```



```
    loport pymosq1
    mport os,
    mort oyo
    & Enable TDSDCNP
    Os.environ['Tosomal
    Gglobal Variableg
    password - -Mack+Carse=
    det cla%:
        If sy9.platform -- '11mux-1306' or sys.platform - '11mux2',
        *)
        0s.0y%en("c10")
        else:
    #dor banner 0
        M
    print
        "Vnoge: python dionaes deceetor.py aip adaremos>n=
    server - -192,166.20.129-
```



```
    M2,
        Clol
        if ien(oys.argv) < 2
        Masge(
```


Exactly, before using a honeypot system, it is important to thoroughly evaluate the advantages and disadvantages of high and low interaction honeypots. Choosing the one that is difficult to detect by cyber attackers or making modifications to existing systems to make it more challenging can be beneficial for you or your organization. By considering these factors and implementing the appropriate measures, you can enhance your security and gain valuable insights into the tactics and techniques used by malicious actors.

Hope to see you in the following articles.
Note: Although the screenshots belong to T-Pot version 16.10, it has been confirmed that the dionaea_detector.py tool can successfully detect Dionaea in the latest version of T -Pot, which is version 17.10 sürümü.

