
Sandbox Detection
written by Mert SARICA | 2 December 2019
In my blog posts that I wrote 8-9 years ago (Anti Analiz, Anti Anti-VMWare),
I mentioned that malicious individuals who develop malware use various
methods to make it difficult for security researchers or systems to analyze
their malware on virtual systems.

Nowadays, with the widespread use of Virtual Desktop Infrastructure (VDI)
technologies in corporate environments, virtual systems are no longer
primarily used by servers or malware analysts, security researchers. As a
result, malware developers, and also red team members who perform ethical
hacking, aim to design and develop tools that can operate on virtual systems
but are not detectable by virtual analysis systems. Knowing that it is
impossible to develop a tool that does not work on virtual analysis systems
with a realistic approach, malware developers are searching for their
malware’s hash values on VirusTotal at certain intervals to understand if
they have been detected and to stop their operations. Similarly, red team
members who do not want to be caught, use projects like RedELK to ensure the
sustainability of their operations.

I have decided to research and share with you how easy or difficult it is to
detect these trusted sandbox systems, such as VirusTotal, Any.Run, Hybrid
Analysis, Lastline Analyst, VMRay Analyzer, etc. which are commonly used by
end-users and security experts to upload files suspected of being malicious.

To do this, I first needed to gather information (reconnaissance) about the
sandbox systems. When a software is uploaded to a sandbox system, it is
monitored and recorded by the system when it communicates with a target
system (C&C) during dynamic analysis. In short, these systems are allowed to
have internet connections on them. So, I decided to prepare a Microsoft
Office macro that collects information about the target operating system. The
easiest way to do this with the macro is to take advantage of the Windows
Management Instrumentation (WMI) which is commonly used for lateral movement
in targeted attacks (APT). If you do a small research on Microsoft’s website
about WMI, you can see that you can collect a lot of information about the
target operating system using the Win32 Provider.

To avoid reinventing the wheel, I did a quick search on Google and came
across a simple script that collects information via WMI using VBA. After

https://www.mertsarica.com/sandbox-detection/
https://www.mertsarica.com/anti-analiz-kodlari/
https://www.mertsarica.com/anti-anti-vmware/
https://github.com/outflanknl/RedELK
https://www.virustotal.com
https://any.run/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.lastline.com/solutions/analyst/
https://www.vmray.com/products/malware-sandbox-vmray-analyzer/
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-start-page
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-start-page
https://docs.microsoft.com/tr-tr/windows/desktop/CIMWin32Prov/win32-provider
https://sites.google.com/site/beyondexcel/project-updates/exposingsystemsecretswithvbaandwmiapi


adding 25 classes that are specific to the operating system on Microsoft’s
page to this script file, I made it send the information to
https://www.mertsarica.com/macro.php. To make sure it cannot be easily
detected by antivirus software, I also used the macro_pack tool to hide the
macro (obfuscation).

https://docs.microsoft.com/en-us/windows/desktop/cimwin32prov/operating-system-classes
https://github.com/sevagas/macro_pack




After uploading the Mert-Obfuscated25.xlsm file to Any.Run and VirusTotal, I
saw requests coming to https://www.mertsarica.com/macro.php after a short
time. When I looked at the incoming requests, I saw that there was quite a
bit of information for me to analyze regarding the systems that perform
sandbox analysis. :)

While looking at this information, my attention was first caught by the
LastBootUpTime value that appeared in the output of the Select * From
Win32_OperatingSystem WMI request. This value indicates the date and time
when the operating system was last started. Sandbox systems restart the

https://app.any.run/tasks/09f3568a-6413-477d-a683-9380186d2729
https://www.virustotal.com/gui/file/d878a7c8fa46c52020a07de7726a8a740d245dcf0a58355b88a054059f933ba3/detection
https://docs.microsoft.com/en-us/windows/desktop/cimwin32prov/win32-operatingsystem
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-operatingsystem
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-operatingsystem


operating system from scratch, in its clean state, before analyzing the
malware, so there is a maximum time difference of 30 minutes between the date
and time of the operating system’s reboot (LastBootUpTime) and the date and
time of the analysis (LocalDateTime). Based on this information, it is
possible to assume that the software was analyzed in the sandbox.

As I continued to look at the information I had collected, I came across an
output where I noticed a difference of 4 months between LastBootUpTime and
LocalDateTime. This raised suspicion since a user system (Windows 7) that
hasn’t been restarted for 4 months is quite unusual, so I began to
investigate this information more closely. As it is known, most security
researchers, malware analysts have an isolated, virtual analysis system. To



save time, this analysis system is not restarted each time, but instead, is
returned from an instant image (snapshot). An operating system returned from
an instant image, LastBootUpTime gradually becomes older, and the time
difference between LocalDateTime and it can sometimes be months when a
malware is being analyzed. In light of this information, I also checked the
WMI section where I suspected that this output had collected information on
program groups in the Windows operating system, Win32_LogicalProgramGroup,
and this time I saw that the system had tools such as Immunity Debugger,
Process Hacker, which are frequently used by security researchers, malware
analysts. This gave me the information that my Office file was analyzed by a
threat hunter. :)

https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-logicalprogramgroup
https://www.immunityinc.com/products/debugger/
https://processhacker.sourceforge.io/


Lastly, my attention was also caught by the output of the Select * from
Win32_SystemBIOS WMI request. When I looked at the information coming from
the sandboxes, I saw that one of them was running on the BOCHS emulator and
another one was running on the QEMU emulator. Therefore, I understood that
these two systems belong to the sandbox system.

Based on the IP addresses that made requests to the macro.php file during the
period of time up until October, I can say that these are most likely from
VMRay, Lastline, Any.RUN, VirusTotal sandbox systems and a threat hunter’s

https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-systembios
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-systembios
http://bochs.sourceforge.net/
https://www.qemu.org/
https://www.vmray.com/analyses/d878a7c8fa46/report/overview.html
https://app.any.run/tasks/09f3568a-6413-477d-a683-9380186d2729
https://www.virustotal.com/gui/file/d878a7c8fa46c52020a07de7726a8a740d245dcf0a58355b88a054059f933ba3/detection


system.

In conclusion, it does not seem difficult in practice to understand that a
developed software, code is running on a sandbox system using the information
obtained through WMI, therefore it is important to remember that it is
possible for a malicious person or a member of a red team to benefit from
this information and the IP addresses, IP blocks of sandbox systems to bypass
sandbox analysis.

Hope to see you in the following articles.

Note: Those who are interested can download my presentation file titled
“Sandbox Detection” which I discussed this topic in, from the following link,
which was presented on November 22nd at the NOPcon International Hacker
Conference.

https://www.mertsarica.com/sunumlar/Kum_Havuzu_Tespiti.pptx
https://www.mertsarica.com/sunumlar/Kum_Havuzu_Tespiti.pptx
https://nopcon.org

