
Threat Hunting with Yara
written by Mert SARICA | 1 September 2017
Throughout the world, the trend of encrypting data on end-user systems with
malicious software (such as Cryptolocker) and then attempting to profit by
selling the decryption key to users continues unabated. Occasionally,
security researchers are able to decrypt the data that has been encrypted by
malware due to flaws in the encryption algorithms being used. However, in
most cases, users are often forced to pay the high ransom demanded by
malicious individuals in order to regain access to their files. With each
incident, the value of data backups becomes more evident. However, as long as
there are users who act on impulse rather than heeding advice, it seems
unlikely that malicious actors will easily give up on this lucrative avenue
in the near future.

Indeed, with the rapid increase in cyber attacks, the ability to detect
threats and respond to them promptly has become of great importance for
organizations. In fact, visionary companies have started embracing the
practice of cyber threat hunting, aiming to identify threats that can bypass
existing security technologies within their networks and systems. When
looking at the technologies that enable threat hunting, you will often find
that many of them support Yara, a tool that allows you to write your own
signatures. Yara provides the capability to create custom rules and
signatures that can be used to search for specific patterns or indicators of
compromise, enhancing the detection capabilities of organizations in the
ever-evolving threat landscape.

When you look at the blog post published by Halil ÖZTÜRKCİ in 2014 regarding
Yara, you can see that Yara was predominantly used in digital forensics and
memory analysis, particularly with the Volatility tool. However, today you
can see that Yara is widely used in various fields, ranging from threat
hunting to malware analysis, from commercial products like FireEye NX to
open-source and free tools like x64dbg, and even in technologies such as full
packet capture. This allows security professionals to define their own rules
and signatures that can be used in security systems and devices with Yara
support, independent of security vendors. While the idea of writing
signatures may not be pleasant for security experts who have had challenging
experiences with different security technologies in the past, the situation
changes when it comes to Yara because writing rules with Yara is quite

https://www.mertsarica.com/threat-hunting-with-yara/
https://en.wikipedia.org/wiki/CryptoLocker
https://en.wikipedia.org/wiki/Cyber_threat_hunting
https://virustotal.github.io/yara/
http://halilozturkci.com/adli-bilisim-incelemelerinde-yara-ile-zararli-kod-tespiti/
https://twitter.com/halilozturkci
http://www.volatilityfoundation.org/
https://www.fireeye.com/products/nx-network-security-products.html
http://x64dbg.com/#start


simple, yet it provides significant added value, as confirmed by experience.

During the recent resurgence of the Cryptolocker outbreak, I noticed on
social media platforms and the NetSec email list that some security systems
and technologies were inadequate in detecting and preventing such outbreaks.
In light of this situation, I wanted to draw attention to how defensive
security experts can use a simple signature written with Yara to detect
similar threats with modified content when faced with such a situation.

 

 

When we look at the Cryptolocker outbreak, we observe that numerous variants
of Cryptolocker were being sent from different email addresses under the name

http://www.netsectr.org/p/netsec-listesi.html


“priceX.zip” within a span of 24 hours. Each zip file contained a downloader
with obfuscated JavaScript code, which, when executed, would download and run
the encryption malware on the system.

 

 

When it comes to detecting variants that differ in size, dimensions, and
content, you can easily achieve this using Yara. First, when we list the
sizes, we see that all variants except one are smaller than 55 KB. When
examining the content of the files, although the content is completely



different, we can proceed by analyzing the complex code using the String
function to extract the domain name and the downloaded file.

 

 

Under normal circumstances, assuming that the number of occurrences of the



String function in a file smaller than 55 KB would be less than 150 unless
the file is suspicious, we can create a Yara signature using Yara keywords as
follows. After confirming the correct functioning of our signature
“cryptolocker.yar” and verifying that it can detect all the variants using
the Yara tool, we can upload our signature to all security systems and
technologies that support Yara. By doing so, we make significant progress in
detecting new outbreaks and threats.

 

 

http://yara.readthedocs.io/en/v3.6.3/writingrules.html
https://github.com/mertsarica/hack4career/blob/master/codes/cryptolocker.yar


Hope to see you in the following articles.

https://www.mertsarica.com/images/yara7.jpg

